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Abstract—The maximum pressure excursions which occur in the pure vapor film enveloping a very

hot sphere of constant temperature which is suddenly exposed to a pool of saturated and stagnant liquid

are analytically evaluated. Heat conduction in the incompressible liquid, arising from saturation tem-

perature’s dependence upon pressure, is shown to be important. Generalized predictions for maximum
pressure are presented in the form of graphs, and approximative equations are derived.

NOMENCLATURE A, penetration depth of temperature disturbance
A, parameter, A2 = P/Rpdo; into liquid;
B, parameter, B = (T,— T, )/In(P/P,); 4, vapor film thickness;
C, liquid specific heat; d¢9,  initial vapor film thickness;
e, constant, e = 2.7182...; 0, dimensionless liquid temperature,
F, dimensionless parameter, 6 = (r/R(\T—T,)/B;
F = o/[1+(4/3 Butdl/dm |ave]; A, heat of vaporization;
I function of time; ¥, dimensionless parameter,
I, indefinite integral, y = (8o/R)kB/[ k(T — T,0)];
. 0, liquid density;
I?= J [In(p)]*dz; p»  vapor density at ambient pressure and
0 average temperature;
k, liquid thermal conductivity; T, dimensionless time, T = At.
k., vapor thermal conductivity; .
M, vapor mass per unit area in film; Superscripts
m, dimensionless vapor mass per unit area, . first ordinary time derivative;
m= M/p,do; s second ordinary time derivative.
n, integer;
P, local pressure; INTRODUCTION
P, pressure far from sphere; THE PRESSURE excursions which follow sudden ex-
p. dimensionless film pressure, p = P/P; posure of a hot body to a liquid pool have been the
Gos heat flow into interface from vapor; subject of several recent studies with the safety of
qL, heat flow from interface into liquid; nuclear reactorsas an important immediate application.
R, sphere radius; Not only might nearby equipment and structures be
7, radius; affected by these pressure excursions, but it has also
T, temperature; been conjectured that they could be responsible for the
T., saturation temperature; observed fragmentation of hot molten drops in con-
T, sphere temperature; tact with a liquid.
T,, liquid pool temperature; Experimental studies pertinent to,this problem are
t, time; few. Board et al. [1] measured pressure excursions
v, liquid radial velocity; arising from a metal foil suddenly heated by an elec-
X, distance into liquid from interface, trical current while submerged in water and reported
x =r—(R+9). the pressure’s amplitudes and frequencies. Flory, Paoli
and Mesler [2] photographically studied the frag-
Greek symbols mentation of molten metal drops quenched in a liquid.
o, dimensionless parameter, Most transient film boiling analyses assume pressure
o= [kv(Tw—Tw)/p,,A](Rp/ég Pt to be constant in the vapor film which lies between
oz,  liquid thermal diffusivity; the hot body and the liquid and are not applicable
B, dimensioniess parameter, to the subject problem. Rooney [3] accounted for the

B* = (kp/k,p)[B/(T, — T)][CB/A];

pressure excursions in the pure vapor film surrounding
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a constant temperature sphere immersed in a saturated
liquid pool. He neglected heat conduction into the
liquid and assumed the liquid to be incompressible.
These simplifications permitted the oscillatory pressure
excursions to be predicted at all times and for ali
ranges of the parameters considered by simple and
analytically derived equations. However, his results
give only the upper bound for the pressure excursion.
Kazimi et al. [4] executed a detailed study of the same
problem for a subcooled liquid, accounting not only
for pressure excursions in the vapor film but also
accounting for heat conduction in the liquid, liquid
compressibility, finite heat capacity of the hot body,
and the presence of some noncondensable gas in the
vapor film. Because of the complexity of their mathe-
matical model, numerical solutions specific to particular
cases only were obtained. While they demonstrated
that pressure excursions can be of appreciable mag-
nitude and that the effects of liquid heat conduction
are important, outweighing the effects of liquid com-
pressibility, it is difficult to extend their results to
other cases.

The purpose of the present work is to extend the
analysis of Rooney to account for the effect of heat
conduction in a saturated liquid while retaining suffi-
cient simplicity to allow accurate analytical solution
of the describing differential equations. The overall aim
is to achieve solutions for the maximum pressure ex-
cursions which are easily applicable to a broad range
of parameter values.

PROBLEM FORMULATION

As shown in Fig. 1, a sphere is immersed in a large
pool of stagnant and saturated liquid with a thin film
of vapor initially separating the sphere from the liquid.
The sphere temperature is constant at a high value so
that heat flows into the liquid—vapor interface by
conduction across the vapor, generating additional
vapor. Because the vapor is much less dense than the
liquid, the liquid must ultimately be displaced away
from the sphere which requires that the pressure in
the film rise. In addition to accelerating the liquid
away from the sphere, this pressure rise also increases
the temperature of the liquid—vapor interface. As a
result, heat is conducted into the liquid from the inter-
face, leading to a vaporization rate which is diminished
from its initial value. Because of the diminished .vapori-
zation rate and the resultant lessened need for vapor

solid sphere

vapor film

liquid pool
F1G. 1. Physical configuration and coordinate system.
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volume, the liquid need not undergo as rapid a dis-
placement and the film pressure rise is less than in the
absence of heat conduction into the liquid.

Because of its-inertia, the liquid later undergoes too
large a displacement; the pressure in the film decreases
below the ambient value, and the liquid then accelerates
toward the sphere. The general result is that film thick-
ness and pressure have an oscillatory behavior. The
present study emphasises an examination of pressure
behavior only up to the first pressure maximum which
would be expected to be the largest one.

In the following analysis, a spherical geometry and a
nonzero initial film thickness are assumed to avoid the
infinitely large pressure excursions which otherwise are
encountered for the assumed incompressible liquid.
Gravitational body forces are neglected. The vapor film
is taken to be thin enough for its curvature to be
neglected and to always have a linear temperature
distribution. It is also assumed that the liquid and
vapor are in equilibrium at their interface at a tem-
perature which corresponds to the instantaneous film
pressure, and that the saturation temperature varies
logarithmically with the film pressure.

The one-dimensional energy equation for the liquid is

OT/0t+v0T/or = ap(8*T/or* +2r~ 10T /0r)

TO,r)=T, )
T(t,R+0) = T,(P)
T(t,o0) =T,

which is recast into the form
06/8t+ (v—8)00/0x —v(x + R+8)" 10

= 0. 326/0x?
8(0,%) = 0 )
0(,0) = R~ (R+8)In(P/P,)
0(t, 0) = 0.

It has been determined by others that convection in the
liquid is not important for the situation considered
here {5]. Accordingly, equation (2) with convective
terms neglected and with film thickness considered to
be small relative to sphere radius simplifies to

060/8t = A™ 12 8%0/6x?

0(0,x) =0
6(z,0) = In(p) @)
0(t, 00) = 0.

An approximate, but accurate, solution to the simplified
energy equation (3) is obtained by an integral method
[6] In integral form equation (3) is

A
d(f 6dx)/dt= — A 10, 30(,0)/0x. (4
0

The spatial distribution of dimensionless temperatures
is approximated by

6 = (1—x/A)* In(p) )

which is most accurate for monotonically increasing
interfacial temperatures.
Introduction of equation (5) into equation (4) then
gives
d[Aln(p)]/dr = 64~ "oy In(p)/A
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from which it is found that
Aln(p) = (124" tap )}l ©

where

2= Jz[ln(p)]z dr.

The heat flow into the liquid at the interface is
evaluated from the relation

gL = —kéT(z, R+ d)/or
and in conjunction with equation (6) to be
gz = kR™'Bln{p}+ B(@AkpC/3)* dI/dr. N

Conservation of energy applied to the liquid—vapor
interface requires that

AdM/dt = g,~q;. (8)

Assuming that heat flows from the hot sphere to the
interface by conduction through the thin vapor film,
one has

qp = ku(Tw“ T.;)/é (9)

where it is assumed that T,,— T, is negligibly affected
by variation of saturation temperature. The vapor is

taken to be a perfect gas so that one also has
M =ép,P/P,. (10)

Introducing equations (7), (9), and (10) into equation (8)
then gives

dm/dt = o[ p/m—yIn{p}] ~(4ﬁ2é/3)* di/dr. (1)

The one-dimensional continuity and momentum
equations in spherical coordinates for the incompres-
sible liquid are

(riv)/or =0 (12)
and
dv/ot+4 003 /or = —p~ ' BPjor. {13
Equation (12) shows that
rlo = f(1). (14)

Substitution of this result into the momentum equation
{13) followed by integration fromr=R+dtor= o0
gives

JIR+8) =1 f?/(R+8) = (P=Py)p. (15)

Conservation of mass applied to the liquid-vapor
interface requires that
M = p(b—v). (16)

Substitution of equations (10) and (14) into equation
(16) gives

SIR+8) = (Po/p)d(M/Pydi—M/p.  (17)
Taking the time derivative of equation (17) results in

FIR+P~2f5/(R+8) = (Po/p,) 4% (M/P)/dt* — M/p.
(18)

Upon substitution of equations (10), (17), and (18) into
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equations (15) and putting into dimensionless form it
is found that

d? (m/p)/dz? —(p,/p) d*m/d<?
+3(80/R)[d (m/p)/dt —(p,/p) dm/dr]
x [3d(m/p)/dt + (p./p)dm/dt] = p— L. (19

Because attention is focused on cases where the vapor
film thickness is small relative to the sphere radius,
terms for which §¢/R is a coefficient can be deleted.
Realizing, in addition, that the vapor is much less dense
than the liquid (p,/p <« 1), equation (19) reduces to

d*(m/p)/de® = p—1. {20)
Initial conditions imposed are that
St=0)= 3o 20
Pt=0)=P, (22)
v(t=0,r)=0. (23)

From equations (21) and (22) the corresponding
dimensionless initial conditions are

m{t =0) = 1= p(r =0). (24)
Equation (16) in conjunction with equation (23) re-
quires initially that

M = pé
which, when taken together with equation (10) gives
the dimensionless initial condition

d(m/p)/dt = (p,/p) dm/dr.

Again because p,/p < 1, this initial condition can be
represented as

d(m/pydr = 0. (25)

For convenience and clarity the equations to be
solved and their initial conditions are brought together

dm/dt = ap/m—(4/3 Bt dl/dr {11)
d?(m/p)/dz* = p—1 20

and,att =0
m(z = 0) = 1 = p(z = 0) 24)
d(m/p)dz = 0. 25)

The dimensionless film thickness is, from equation (10),

3/8¢ = m/p. (26)

SOLUTIONS

Equations (11), (20), (24), and (25) must be solved
to determine the dimensionless film pressure (p), mass
per unit area (m), and thickness (5/80) and are charac-
terized by a nonlinearity which makes recourse to a
numerical solution unavoidable in general. It must be
remembered that the temperature profile used in the
integral solution of the liquid’s energy equation is most
accurate for monotonically increasing interface tem-
peratures. Accordingly, any solutions obtained are
most accurate to the time at which film pressure
attains its first maximum.
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The two parameters, « and B, have opposite major
influence as is seen by inspection of equation (11).
The parameter « can be interpreted as the initial rate
of dimensionless vaporization. Since vaporized mass
requires a pressure excursion to displace liquid away
from the sphere, large pressure excursions are expected
to be associated with large values of «. And, small
pressure excursions are expected when « is smatl.

The parameter B can be interpreted as the ratio of
the conductive heat flux into the semi-infinite liquid
pool (with a step change of interface temperature of
magnitude B), evaluated after a time interval equal to
that required for the initial vapor mass to be vaporized
by conduction through the vapor at the initial rate, to
the initial conductive heat flux through the vapor. In-
asmuch as heat conduction into the liquid reduces the
vaporization rate, § acts primarily to diminish the
pressure excursion. Accordingly, large values of g are
expected to be associated with small pressure ex-
cursions while small values of § are expected to be
associated with pressure excursions only slightly below
those predicted by Rooney for 8 = 0. As equation (11)
shows, large values of « have a greater effect upon the
heat conduction through the vapor than upon the heat
conduction into the liquid. Accordingly, pressure ex-
cursions are expected to increase with increasing values
of a even for large values of 5.

Their definitions show that § is independent of
initial film thickness while « is strongly dependent on
it. Since the initial film thickness for a specific physical
situation is somewhat uncertain, B is likely to be
known with more certainty than is o.

Numerical method

The general case was solved by application of the
MIMIC program on an H635 digital computer. The
step size used in the numerical integrations was auto-
matically adjusted to maintain a prescribed accuracy.

Small excursions

For small pressure excursions a simple approximate
solution can be obtained. Equation (11) can be re-
written as

dm/dt = ap/m—(4/3)* Bt (dI/dm)(dm/d7)
and rearranged into the form
dm/dt = Fp/m 27

where F = /[ 1 +(4/3) B d1/dm|ay.] is assumed to be
a constant which can be evaluated later, an insight
gleaned from the numerical solutions.

Equations (20), (26), (24), and (25) are then of the
same form as those solved by Rooney. The solution is

In(p) = Fm™*sin [(2/3F)(m% —1)]. (28)
From this solution it is found that
I (Pmax)} = F
or
Pro = 1+F (29)
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at
Mumax = (14 37F/4)} (30)
and
Tmax = /2. (31
I can be evaluated now by rearranging its definition
into :
I*= jlm [In (p)]*(dz/dm) dm.

Incorporating equation (27) into this relation gives

FI* = Jlm [in (p)]*(m/p) dm.

For the case where p ~ 1, one then has
FI’ x f [In (p)]*m dm.
1

Introducing equation (28) yields

I? = (F*/4)(z—sinz) (32)

where
z = (4/3F)(m*-1).

Because equation (32) gives dI/dm as a nearly con-
stant function, dI/dm is approximated by

Moax

(dI/dm)dm

1

dIfdm|se = (Mpa— 17! J

from which, in conjunction with equation (32) it is found
that

dI/dm|ye = F(r/4[(1 +3nF /4 - 1]

For the limiting case where pressure is expected to be
small (small values of F)

d1/dm|ae = 1%,

This result substituted into equation (29) gives
Pmax = 1+ 0/[1+(4/3n)* fa?]. (33)

With the understanding that m is but little affected
by pressure excursions when F is small, equation (26)
reveals that the ratio of film thickness with and without
pressurization is

opressure/éno pressure X 1 i F

Thus, if there is to be less than a 10%, influence of
pressure excursions upon film thickness it is necessary
that

F = o/[1+ (4/3m) fot] < 0.1. (34)

The pressure oscillation’s frequency and amplitude
are given by the same expressions previously given by
Rooney, but with F from equation (34) used in place
ofa.

Large excursions
The large pressure excursions that are expected when
o is very large can also be predicted by an approximate
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solution. For this. case, equation (20) is accurately
approximated as

d*(m/p)/de® = p. (35)

Repeating the argument advanced in connection with
small pressure excursions, equation (11) is again
approximated by equation (27).

Equations (35), (27), (24), and (25) are then of the
same form as previously solved by Rooney. The
solution is

p=me "/6F (36)
from which it is found that
Pmax = (2F%/e)} (37
at
Minax = (2F2)} (38)
and
Tmax = (2/F)? (39)

showing that
Smax/O0 = €3,

Again, it is necessary to evaluate I which was pre-
viously shown to be available from the relationship

FI* = J [in (p)](m/p) dm.
1
Introducing equation (36) into this gives

FI? = J [In (m)—m3/6F2]% e™/5F* dm.
1

Expanding the squared term in the integrand and in-
tegrating by parts leads to

FI* = J‘ [In(m)+ 1/3]? e™/eF* dm_,_f em6F? 4
1 1
—(2/3)m1n (m)e™ /5" + (m*/18F 2 em/eF*
— (4m/9) ™o —e}F/18F2 1 4/9 e, (40)

Anticipating again that dI/dm does not vary much with
m, an average value is obtained as

Minax

dI/dmave = (mmax - 1)_ ! J (dI/dm) dm

1

or,
dI/dmave = (Mpax — 1)_ ‘I(mmax)
where m,,, is given by equation (38). The integrals

in equation (40) are evaluated by expanding e™/5F* in
series according to

em3/6F2 — z (m3/6F2)"/n!
n=0

which ultimately yields

dI/dm|q, = 0.8192(2F2/e)[{In (2F2/e)* —0.6954}
+0.8443 —0.6562(2F2/e) *1¢.

Because of the relationship between p,,., and F given
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by equation (37), this result can be put into the more
convenient form

dI/dm|yye = 0.8192p & [{In (prngy) —0.6954}2 +0.8443
—0.6562/pmax]?- (41)

Recalling again the relation between p,,, and F given
by equation (37) and the definition of F, the final result
is
(€/2) phaxi 1 +0.946p 53, [{IN (Pay) —0.6954}2
+0.8443 —0.6562/pmax |1 Bt} = 2. (42)

Although equation (42) is an implicit relation for
Pmax When o and f are known, it is still useful because
of its accuracy and algebraic nature. A practical pro-
cedure for its use is to first solve it for a* in terms
Ol Prmax and f. Then successive assumed values of p,,.«
are used with the known value of § until the calculated
o equals the known value of . More accuracy can be
obtained if the B and T, — T; values used to evaluate
o and f are determined at an average pressure in an
iterative manner.

DISCUSSION

The results of the calculations for maximum film
pressure are shown in Fig. 2. There it is seen that the
approximate solutions for large and small values of the
parameter « are in good agreement with the numerical
solutions except for the f = O case, where the approxi-
mate solutions are inaccurate at intermediate values of
a.

~N

10 Ty

— - — — equation (33)

T VITIT

— - — equation (42}
exact

”
g 10
of

] . 1
10 I 10 I0° 10 10

F1G. 2. Dimensionless maximum pressure as a function of
the dimensionless parameters « and §.

Even though the factors of major influence are be-
lieved to have been accounted for in this study, the
results for maximum pressure must still be regarded
as upper bounds. Accounting for the compressibility
of the liquid which is neglected here, for example, was
shown by Kazimi et al’s numerical calculations to
lead to a slightly lower maximum pressure. The drop
in surface temperature of the hot sphere caused by
its loss of heat has also been neglected and would be
expected to lead to a slightly lower maximum pressure.
However, the generality of the present results is be-
lieved to justify the sacrifice in accuracy caused by
neglecting factors of only secondary influence.

To illustrate the application of these results, consider
a 500°C sphere of 0.3 cm radius suddenly put in con-
tact with a 100°C pool of saturated water. For these
conditions, § = 13.
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If the initial vapor film thickness is 3x 107 %cm,
o =06and A= 3.5x10%"! Figure 2 and equation
(33)show that the maximum pressure is 1.08 x 10°N/m?,
representing a pressure excursion of 0.08 x 10°N/m?
and occurring after 45 x 10™¢s according to equation
(31). The importance of heat conduction in the liquid,
embodied in the parameter f, is shown by the over-
prediction that the maximum pressure excursion is
0.5 x 10°N/m? if f =0. The qualitative agreement of
this case with the experimental pressure measurements
of Board is good inasmuch as he reported pressure
excursions of about 6900 N/m?. Also, equation (34)
shows that this pressure excursion would have less than
a 10% influence on the growth of the film.

At the other extreme, if the initial vapor film thick-
nessis 10~ fem, o = 3120and 4 = 61 x 10*s™*, Figure 2
and equation (42) indicate that the maximum pressure
is 12.5 x 10°N/m?, representing a pressure excursion
of 11.5x 10°N/m? and occurring after 0.55x 107 %s
according to equation (39). If heat conduction in the
liquid had been ignored by setting f =0, a pressure
excursion of 192 x 10°N/m?* would be predicted which
testifies again to the importance of liquid heat con-
duction. Although Kazimi et al, only executed
calculations for a subcooled liquid with some non-
condensable gas initially present in the film, at their
lowest subcooling of 20°C they obtained a maximum
pressure of 6.8 x 10°N/m? after 0.9 x 107 ®s with an
incompressible liquid for the conditions of this example.

2
'O T ||1|”VI T |1Y'u|’| 1 Vlll'”‘ T ||I||”| T YT,
0 =
ok J
I E

4 j | ] A
IO ot b bAidL bt L LiLit e bud LLiL i i p 13t

17 ' ( 10 10 10

T

FiG. 3. Dimensionless pressure as a function of dimension-

less time for o = 3120 and B = 13: (a) present study with

saturated liquid; Kazimi et al. [4] for water with ambient

pressure of latm at (b} 20°C subcooling and (¢) 50°C
subcooling.
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This is only fair agreement, although the difference is
in the proper direction since subcooling should yield
a lower pressure. A plausible relation between the
pressure excursions for saturated and slightly sub-
cooled liquid pools is seen in Fig. 3 for the case where
o=3120and f = 13.

The initial film thickness, as mentioned before, is
likely to be an uncertain quantity whose magnitude
depends upon the specific circumstances encountered.
Figure 2 and the foregoing illustrative examples in-
dicate that if B is large, the maximum pressure
excursion will be small and does not vary much with
o (which is dependent upon initial film thickness) so
that the maximum pressure is rather insensitive to the
initial conditions. Liquid compressibility can be safely
neglected under these conditions. At the other extreme
where f is small, the maximum pressure excursion is
quite sensitive to the initial conditions and liquid com-
pressibility would be of some importance.
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INFLUENCE DE LA CONDUCTION THERMIQUE DU LIQUIDE
SUR LE MAXIMUM DE PRESSION POUR L’EBULLITION EN FILM AUTOUR
D’'UNE SPHERE D'UN LIQUIDE SATURE

Résumé—On évalue les pointes de pression maximale qui se produisent dans le film de vapeur pure

qui enveloppe une sphére trés chaude et & température constante, mise en contact brusque avec un liquide

saturé au repos dans un réservoir. On montre que la conduction thermique dans le liquide incompressible,

liée & la dépendance de la température de saturation vis & vis de la pression, est trés importante. On

présente, sous forme de graphes et d’¢quations approchées, les prévisions généralisées de la pression
maximale.

DER EINFLUSS DER FLUSSIGKEITSWARMELEITUNG AUF DEN
BEIM INSTABILEN FILMSIEDEN EINER GESATTIGTEN FLUSSIGKEIT
AN EINER KUGEL AUFTRETENDEN MAXIMALDRUCK

Zusammenfassung — Beim plotzlichen Eintauchen einer sehr heiflen Kugel konstanter Temperatur in eine
ruhende, gesittigte Fliissigkeit entsteht ein reiner Dampfiilm um die Kugel. Die dabei auftretenden
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maximalen Driicke werden analytisch ausgewertet. Infolge der Druckabhingigkeit der Sittigungs-

temperatur ist die Wirmeleitung in der inkompressiblen Fliissigkeit von besonderer Bedeutung. Der

Maximaldruck wird in Form verallgemeinerter Diagramme wiedergegeben; eine Naherungsgleichung
wird abgeleitet.

BJIMSHUWE TEIJIOIPOBOAHOCTHU XNIKOCTU HA MAKCUMAIJIBHOE JABJIEHUE
ITP1 HECTAITMOHAPHOM IJIEHOYHOM KWITEHUHM HA TTIOBEPXHOCTH IIAPA,
NOTPYXEHHOI'O B HACBIIUEHHY IO XUJKOCTb

Annoramua — J{aH aHATTMTUYECKAN pacyeT MaKCHMANbHBIX OTKJIOHEHKH JaBJICHHA B TUICHKE YHCTOTO
napa, MOKpBIBAIOLIEH CHIBHO HarpeThiil mIap ¢ MOCTOAHHON TeMrnepaTypofi, TIpH €ro BHE3ANHOM
MOTPYXEHHH B OOBEM HACHIIIEHHON W HEMOABMXKHOM XMakocTH. IToka3aHa BaXHOCTb Ipouecca
TEIUIONPOBOMHOCTH B HECKMMAEMOH XWIKOCTH, BO3HHKAIOIEro BCIEACTBHE 3aBHCAMOCTH TeEM-
nepaTypsl HACHILIEHHA OT JaBicHHs. I'paduyeckH NpencTapieHBl OGOOIUCHHEIE 3aBUCHMOCTH ISt
MaKCHMAJTLHOTO [aBJICHAS ¥ BBIBEICHDI MPUGITIKEHHBIC Y DABHEHHS.
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